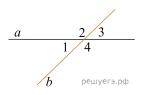
Вариант № 176

Централизованное тестирование по математике, 2014

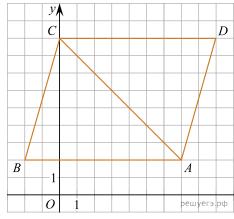

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Даны дроби $1\frac{4}{7}$, $4\frac{4}{7}$, $4\frac{2}{7}$, $4\frac{1}{7}$, $1\frac{1}{7}$. Укажите дробь, которая равна дроби $\frac{29}{7}$. 1) $1\frac{4}{7}$ 2) $4\frac{4}{7}$ 3) $4\frac{2}{7}$ 4) $4\frac{1}{7}$ 5) $1\frac{1}{7}$
- 2. Укажите номер рисунка, на котором изображены фигуры, симметричные относительно прямой l.

лу <u>ега</u> ф	Jyer∌rpф		iye <u>rərp</u> ф		<u>l</u>	луе <u>гэг</u> рф
1)	2)	•	3)		4)	5)
	1) 1	2) 2	3) 3	4) 4	5) 5	

3. Прямые a и b, пересекаясь, образуют четыре угла. Известно, что сумма трех углов равна 220°. Найдите градусную меру меньшего угла.


- 1) 140°
- 2) 110°
- 3) 15°
- 5) 40°
- **4.** Результат разложения многочлена x(4a-b)+b-4a на множители имеет вид:
- 1) (4a-b)(x-1) 2) (4a-b)(x+b) 3) (4a-b)(x+1) 4) x 5) x+1

5. Вычислите $\frac{6,4^2-3,3^2+9,7\cdot 4,9}{8}.$

1)
$$\frac{9}{7}$$
 2) 9,7 3) $\frac{9}{8}$ 4) 6 5) 6,72

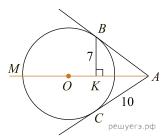
3)
$$\frac{9}{8}$$

6. На координатной плоскости изображен параллелограмм АВСО с вершинами в узлах сетки (см.рис.). Длина диагонали АС параллелограмма равна:

- 2) $9\sqrt{2}$
- 3) $2\sqrt{2}$
- 4) $7\sqrt{2}$
- 7. Длины катетов прямоугольного треугольника являются корнями уравнения $x^2 5x +$ 2 = 0. Найдите площадь треугольника.

 - 1) 2,5 2) 3,5 3) 5 4) 1 5) 2

- **8.** Пусть $a = 2,9; b = 8,7 \cdot 10^3$. Найдите произведение ab и запишите его в стандартном виде.


2/6

- 1) $2523 \cdot 10^1$ 2) $0.2523 \cdot 10^5$

- 3) $2.523 \cdot 10^2$ 4) $25.23 \cdot 10^3$ 5) $2.523 \cdot 10^4$
- **9.** Выразите *n* из равенства $\frac{3+m}{2} = \frac{n-m}{8}$.

1)
$$n = 5m + 12$$
 2) $n = 10m + 24$ 3) $n = 5m - 12$ 4) $n = 10m - 24$ 5) $n = 2m + 3$

10. Из точки A к окружности проведены касательные ABи AC и секущая AM, проходящая через центр окружности O. Точки B, C, M лежат на окружности (см. рис.). Известно, что BK = 7, AC = 10. Найдите длину отрезка AK.

- 2) $\sqrt{149}$ 1) 51
- 3) $\sqrt{51}$
- 5) 7
- 11. Даны два числа. Известно, что одно из них меньше другого на 4. Какому условию удовлетворяет большее число x, если сумма квадратов этих чисел не меньше удвоенного квадрата большего числа?
 - 1) x > 8 2) x < -2 3) x > -2 4) x > 2 5) x < 2

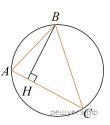
- 12. Свежие фрукты при сушке теряют а % своей массы. Укажите выражение, определяющее
- массу сухих фруктов (в килограммах), полученных из 50 кг свежих. 1) $\frac{5000}{100+a}$ 2) $\frac{5000}{a}$ 3) $\frac{50(100-a)}{100}$ 4) $\frac{5000}{100-a}$ 5) $\frac{50(100+a)}{100}$
 - **13.** Объем конуса равен 9, а его высота равна $\frac{1}{2}$. Найдите площадь основания конуса.
 - 1) $\frac{1}{6}$ 2) 6 3) 54 4) $\frac{2}{27}$ 5) $\frac{27}{2}$
- **14.** Известно, что наименьшее значение функции, заданной формулой $v = x^2 + 8x + c$, равно -5. Тогда значение c равно:
 - 1) 16
- 2) 11 3) 21 4) -21 5) -53

15. Строительная бригада планирует заказать фундаментные блоки у одного из трех поставщиков. Стоимость блоков и их доставки указана в таблице. При покупке какого количества блоков самыми выгодными будут условия второго поставщика?

Поставщик	Стоимость фундаментных блоков (тыс. руб. за 1 шт.)	Стоимость доставки фундаментных блоков (тыс. руб. за весь заказ)		
1	210	1700		
2	230	950		
3	285	бесплатно		

- 1) более 17 2) от 18 до 37 3) от 20 до 55 4) менее 38 5) от 17 до 38

- **16.** Расположите числа 2^{20} , 9^6 , 33^4 в порядке возрастания.


1)
$$9^6$$
, 2^{20} , 33^4 2) 2^{20} , 33^4 , 9^6 3) 9^6 , 33^4 , 2^{20} 4) 2^{20} , 9^6 , 33^4 5) 33^4 , 9^6 , 2^{20} 6, 2^{20} 7, 2^{20} 9,

- 17. Через вершину A прямоугольного треугольника ABC ($\angle C = 90^{\circ}$) проведен перпендикуляр AK к его плоскости. Найдите расстояние от точки K до прямой BC, если AK = 4, AB = 9, $BC = \sqrt{33}$.
 - 1) 13 2) 7 3) $4\sqrt{3}$ 4) $\sqrt{97}$ 5) 8
- **18.** Сумма корней (корень, если он единственный) уравнения $\sqrt{2x-3} \cdot \sqrt{x+1} = 3-x$ равна (равен):

1)
$$\frac{-5-\sqrt{73}}{2}$$
 2) $\frac{-5+\sqrt{73}}{2}$ 3) 10 4) 5 5) -12

- 19. Найдите сумму целых решений (решение, если оно единственное) системы неравенств $\int x + 12 \geqslant x^2$ $(x-2)^2 > 0$
- 20. Найдите произведение большего корня на количество корней уравнения $\frac{14}{x^2 - 8x + 22} - x^2 + 8x = 17.$

21. В окружность радиусом 12 вписан треугольник, длины двух сторон которого равны 8 и 12. Найдите длину высоты треугольника, проведенной к его третьей стороне.

22. Найдите сумму наименьшего и наибольшего целых решений неравенства $\log_{0,3}(x+52) \leqslant 2\log_{0,3}(x-4)$.

23. Найдите сумму (в градусах) наименьшего положительного и наибольшего отрицательного корней уравнения $\sin 2x - \sqrt{3}\cos x = 0$.

24. Три числа составляют геометрическую прогрессию, в которой q>1. Если второй член прогрессии уменьшить на 10, то полученные три числа в том же порядке опять составят геометрическую прогрессию. Если третий член новой прогрессии уменьшить на 36, то полученные числа составят арифметическую прогрессию. Найдите сумму исходных чисел.

25. Найдите произведение суммы корней уравнения $9^{x-5} - 3^{x-5} = 3^{x+3} - 3^8$ на их количество.

26. Найдите количество корней уравнения $\cos x = -\left|\frac{x}{12\pi}\right|$.

27. Найдите сумму целых решений неравенства $\frac{|7x-22|-|5x-14|}{(x-1)(x-5)} \leqslant 0.$

28. Куб вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах пирамиды, а четыре другие вершины — на ее основании. Длина стороны основания пирамиды равна 1, высота пирамиды — 3. Найдите площадь S поверхности куба. В ответ запишите значение выражения S.

29. Найдите значение выражения $\sqrt{3} - \sqrt{2} - \sqrt{6} - 9 + \text{ctg } 262^{\circ}30'$.

30. Трое рабочих (не все одинаковой квалификации) выполнили некоторую работу, работая поочередно. Сначала первый из них проработал $\frac{1}{10}$ часть времени, необходимого двум другим для выполнения всей работы. Затем второй проработал $\frac{1}{10}$ часть времени, необходимого двум другим для выполнения всей работы. И, наконец, третий проработал $\frac{1}{10}$ часть времени, необходимого двум другим для выполнения всей работы. Во сколько раз быстрее работа была бы выполнена, если бы трое рабочих работали одновременно? В ответ запишите найденное число, умноженное на 20.